metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[(triphenylphosphane)copper(I)]-di-*µ*-iodido-[(triphenylphosphane)copper(I)]- μ -[3,6-bis(4pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate1

linfang Zhang

Molecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: zjf260@ujs.edu.cn

Received 1 October 2010; accepted 21 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.040; wR factor = 0.079; data-to-parameter ratio = 16.9.

The title compound, $\{[Cu_2I_2(C_{12}H_8N_6)(C_{18}H_{15}P)_2] \cdot 2CH_3CN\}_n$ contains centrosymmetric dinuclear $Cu_2I_2(PPh_3)_2$ units bridged by 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine ligands lying also across crystallographic inversion centers, giving a chain structure in the *ab* plane. The distorted tetrahedral Cu^I atoms in the dinuclear unit are coordinated by two bridging iodide anions, one pyridine N atom from the substituted tetrazine ligand and one terminal triphenylphosphine P-atom donor. The Cu $\cdot\cdot$ Cu distance is 2.8293 (12) Å, implying a weak Cu...Cu interaction.

Related literature

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001). For potential applications of these compounds, see: Banerjee et al. (2008); Zhang et al. (2007). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000).

Experimental

Crystal data

л Ν

а h

с

$[Cu_2I_2(C_{12}H_8N_6)(C_{18}H_{15}P)_2]$	$\beta = 101.41 \ (3)^{\circ}$
$2C_2H_3N$	$V = 2616.4 (10) \text{ Å}^3$
$M_r = 1223.80$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.344 (3) Å	$\mu = 2.10 \text{ mm}^{-1}$
b = 11.675 (2) Å	T = 293 K
$c = 18.521 (4) \text{ \AA}$	$0.25 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Rigaku Saturn724 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) $T_{\min} = 0.779, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 299 parameters $wR(F^2) = 0.079$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^-$ S = 1.09 $\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$ 5042 reflections

12271 measured reflections

5042 independent reflections

4233 reflections with I > 2sI)

 $R_{\rm int} = 0.030$

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Foundation of Jiangsu University (08JDG036).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2071).

References

Banerjee, Ra., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939-943.

Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Rigaku (2007). CrystalClear. Rigaku Corp., Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (2000). J. Am. Chem. Soc. 122, 4044-4046.

Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.

Acta Cryst. (2010). E66, m1480 [doi:10.1107/S1600536810042807]

catena-Poly[[[(triphenylphosphane)copper(I)]-di-µ-iodido-[(triphenylphosphane)copper(I)]-µ-[3,6-bis(4-pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate]

J. Zhang

Comment

Metal-organic frameworks have attracted great attention in recent years not only because of their intriguing structures (Eddaoudi *et al.*, 2001) but also their potential applications (Banerjee *et al.*, 2008; Zhang *et al.*, 2007). Long bridging ligands can be employed for the construction of interesting metal-organic frameworks (Withersby *et al.*, 2000). The extended bridging ligand 2,6-bis(4-pyridyl)-1,2,4,5-tetrazine was used to synthesize the title compound $\{[Cu_2I_2(C_{12}H_8N_6)((C_6H_5)_3P)_2 : 2(CH_3CN)\}_n$ (3,6-di₂(PPh₃)₂ (I) by using a diffusion reaction and the crystal structure is presented here.

The centrosymmetric dinuclear $Cu_2I_2(PPh_3)_2$ complex units in (I) are linked by the extended 3,6-di-4-pyridyl-1,2,4,5tetrazine ligands, also lying across crystallographic inversion centers, giving a one-dimensional chain structure (Fig. 1). Each tetrahedral Cu^I centre in the dinuclear unit is coordinated by two bridging I anions [Cu—I, 2.6412 (9), 2.6603 (9) Å], one pyridine-N from the bridging substituted tetrazine ligand [Cu—N, 2.066 (3)Å] and one terminal triphenylphosphine P-donor [Cu—P, 2.2388 (11) Å]. The Cu···Cuⁱ distance is 2.8293 (12) Å, implying a weak Cu···Cu interaction [symmetry code: (i) -*x*, -*y*, -*z*].

Experimental

CuI (0.1 mmol) and triphenylphosphine (0.2 mmol) were added to a mixture of 3 ml of dimethylformamide and 2 ml of H_3CN with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with a solution of 0.1 mmol 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine in 3 ml of CH₂Cl₂. Blue block crystals were obtained after two weeks.

Refinement

H atoms were positioned geometrically with C—H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)_{phenyl, pyridyl}$ or $1.5U_{eq}(C)_{methyl}$.

Figures

Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted. Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x* + 1, -*y* - 1, -*z*.

catena-Poly[[[(triphenylphosphane)copper(l)]-di-µ-iodido- [(triphenylphosphane)copper(l)]-µ-[3,6-bis(4-pyridyl)-1,2,4,5-tetrazine]] acetonitrile disolvate]

F(000) = 1212

 $\theta = 2.8 - 29.1^{\circ}$

 $\mu = 2.10 \text{ mm}^{-1}$

 $0.25\times0.20\times0.15~mm$

T = 293 K

Block, blue

 $D_{\rm x} = 1.553 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 10225 reflections

Crystal data

 $[Cu_{2}I_{2}(C_{12}H_{8}N_{6})(C_{18}H_{15}P)_{2}]\cdot 2C_{2}H_{3}N$ $M_{r} = 1223.80$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 12.344 (3) Å b = 11.675 (2) Å c = 18.521 (4) Å $\beta = 101.41$ (3)° V = 2616.4 (10) Å³ Z = 2

Data collection

5042 independent reflections
4233 reflections with $I > 2s I$
$R_{\rm int} = 0.030$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
$h = -15 \rightarrow 11$
$k = -14 \rightarrow 14$
$l = -18 \rightarrow 22$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 0.5456P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.47 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	-0.01591 (2)	-0.05190 (2)	0.113971 (13)	0.04604 (10)
Cu1	0.11635 (4)	0.00036 (4)	0.02284 (2)	0.04082 (13)
P1	0.23134 (8)	0.14551 (8)	0.06241 (5)	0.0398 (2)
N1	0.1998 (2)	-0.1497 (2)	0.01109 (16)	0.0407 (7)
N2	0.4794 (3)	-0.4221 (3)	-0.05567 (17)	0.0466 (8)
N3	0.4453 (3)	-0.4974 (3)	0.05724 (16)	0.0468 (8)
N4	0.1913 (5)	0.7319 (6)	0.2563 (3)	0.121 (2)
C6	0.4276 (3)	-0.4218 (3)	0.0010 (2)	0.0393 (9)
C13	0.3435 (3)	0.1093 (3)	0.13879 (19)	0.0433 (9)
C2	0.3008 (3)	-0.3135 (3)	0.0653 (2)	0.0518 (10)
H2	0.3187	-0.3623	0.1055	0.062*
C23	0.0102 (5)	0.3983 (5)	0.0741 (4)	0.101 (2)
H23	-0.0614	0.4153	0.0498	0.121*
C22	0.0648 (6)	0.4706 (5)	0.1276 (4)	0.106 (2)
H22	0.0300	0.5367	0.1394	0.128*
C21	0.1706 (5)	0.4459 (4)	0.1637 (4)	0.0941 (19)
H21	0.2070	0.4945	0.2004	0.113*
C3	0.3460 (3)	-0.3303 (3)	0.00372 (19)	0.0383 (8)
C1	0.2290 (3)	-0.2235 (3)	0.0664 (2)	0.0517 (10)
H1	0.1990	-0.2137	0.1083	0.062*
C8	0.3772 (4)	0.1219 (4)	-0.0334 (2)	0.0648 (12)
H8	0.3975	0.0542	-0.0078	0.078*
C7	0.3016 (3)	0.1947 (3)	-0.01016 (19)	0.0463 (9)
C4	0.3140 (3)	-0.2564 (3)	-0.0553 (2)	0.0483 (10)
H4	0.3409	-0.2660	-0.0984	0.058*
C19	0.1689 (3)	0.2757 (3)	0.0911 (2)	0.0481 (10)
C16	0.5102 (4)	0.0355 (4)	0.2532 (2)	0.0654 (13)
H16	0.5662	0.0099	0.2910	0.079*
C5	0.2420 (3)	-0.1687 (3)	-0.0490 (2)	0.0472 (10)
Н5	0.2214	-0.1197	-0.0890	0.057*
C17	0.5309 (4)	0.1236 (4)	0.2086 (2)	0.0631 (12)
H17	0.5998	0.1587	0.2166	0.076*
C18	0.4468 (3)	0.1597 (4)	0.1513 (2)	0.0554 (11)
H18	0.4606	0.2190	0.1208	0.066*
C14	0.3247 (4)	0.0209 (3)	0.1853 (2)	0.0522 (10)
H14	0.2557	-0.0141	0.1779	0.063*
C24	0.0620 (4)	0.2999 (4)	0.0565 (3)	0.0708 (13)
H24	0.0245	0.2500	0.0210	0.085*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.3177 (5)	0.3187 (5)	-0.1108 (3)	0.0841 (16)
H11	0.2973	0.3857	-0.1371	0.101*
C15	0.4076 (4)	-0.0155 (4)	0.2426 (2)	0.0646 (13)
H15	0.3940	-0.0740	0.2737	0.078*
C10	0.3914 (5)	0.2462 (6)	-0.1326 (3)	0.0908 (19)
H10	0.4206	0.2632	-0.1740	0.109*
C12	0.2727 (4)	0.2936 (4)	-0.0497 (2)	0.0648 (12)
H12	0.2226	0.3440	-0.0353	0.078*
C20	0.2222 (4)	0.3491 (4)	0.1454 (3)	0.0706 (13)
H20	0.2939	0.3326	0.1697	0.085*
C9	0.4224 (4)	0.1483 (5)	-0.0934 (3)	0.0834 (16)
Н9	0.4741	0.0994	-0.1075	0.100*
C26	-0.0159 (6)	0.7161 (6)	0.2552 (3)	0.125 (3)
H26A	-0.0565	0.7385	0.2076	0.187*
H26B	-0.0362	0.7646	0.2922	0.187*
H26C	-0.0329	0.6380	0.2647	0.187*
C25	0.1023 (7)	0.7271 (6)	0.2569 (3)	0.0907 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
I1	0.04230 (17)	0.05492 (18)	0.04190 (15)	0.00885 (12)	0.01074 (11)	0.00954 (12)
Cu1	0.0381 (3)	0.0371 (3)	0.0471 (3)	0.0054 (2)	0.0081 (2)	0.0014 (2)
P1	0.0371 (5)	0.0416 (5)	0.0413 (5)	-0.0004 (4)	0.0089 (4)	0.0018 (4)
N1	0.0381 (18)	0.0412 (17)	0.0443 (17)	0.0114 (14)	0.0116 (14)	0.0046 (15)
N2	0.048 (2)	0.0468 (18)	0.0485 (18)	0.0197 (16)	0.0180 (15)	0.0066 (15)
N3	0.050(2)	0.0467 (18)	0.0454 (18)	0.0190 (16)	0.0146 (15)	0.0055 (16)
N4	0.108 (5)	0.154 (5)	0.095 (4)	0.031 (5)	0.005 (4)	0.022 (3)
C6	0.037 (2)	0.0367 (19)	0.044 (2)	0.0082 (16)	0.0076 (17)	0.0012 (17)
C13	0.037 (2)	0.052 (2)	0.0395 (19)	0.0020 (18)	0.0045 (17)	-0.0006 (18)
C2	0.062 (3)	0.049 (2)	0.049 (2)	0.027 (2)	0.019 (2)	0.0137 (19)
C23	0.076 (4)	0.080 (4)	0.138 (5)	0.033 (3)	-0.001 (4)	-0.028 (4)
C22	0.103 (5)	0.062 (3)	0.158 (6)	0.020 (3)	0.033 (5)	-0.038 (4)
C21	0.082 (4)	0.072 (4)	0.129 (5)	-0.004 (3)	0.023 (4)	-0.046 (3)
C3	0.033 (2)	0.037 (2)	0.045 (2)	0.0086 (16)	0.0087 (16)	-0.0022 (17)
C1	0.056 (3)	0.056 (2)	0.049 (2)	0.025 (2)	0.0236 (19)	0.012 (2)
C8	0.066 (3)	0.070 (3)	0.062 (3)	-0.005 (3)	0.022 (2)	-0.003 (2)
C7	0.045 (2)	0.053 (2)	0.041 (2)	-0.0093 (19)	0.0079 (18)	0.0023 (19)
C4	0.051 (2)	0.053 (2)	0.044 (2)	0.019 (2)	0.0167 (18)	0.0094 (19)
C19	0.047 (2)	0.044 (2)	0.055 (2)	-0.0004 (19)	0.0153 (19)	-0.002 (2)
C16	0.060 (3)	0.085 (3)	0.046 (2)	0.014 (3)	-0.004 (2)	-0.010 (2)
C5	0.046 (2)	0.052 (2)	0.045 (2)	0.0205 (19)	0.0113 (18)	0.0115 (19)
C17	0.044 (3)	0.082 (3)	0.060 (3)	-0.006 (2)	0.002 (2)	-0.006 (3)
C18	0.046 (3)	0.068 (3)	0.052 (2)	-0.002 (2)	0.008 (2)	0.002 (2)
C14	0.052 (3)	0.060 (3)	0.045 (2)	-0.001 (2)	0.009 (2)	0.002 (2)
C24	0.060 (3)	0.063 (3)	0.084 (3)	0.012 (2)	0.002 (3)	-0.014 (3)
C11	0.095 (4)	0.095 (4)	0.062 (3)	-0.029 (3)	0.014 (3)	0.023 (3)
C15	0.078 (4)	0.066 (3)	0.046 (2)	0.009 (3)	0.003 (2)	0.009 (2)

C10	0.102 (5)	0.129 (5)	0.048 (3)	-0.047(4)	0.032 (3)	-0.002(3)
C12	0.068 (3)	0.066 (3)	0.061 (3)	-0.011 (2)	0.011 (2)	0.014 (2)
C20	0.055 (3)	0.063 (3)	0.094 (3)	-0.007 (2)	0.015 (3)	-0.028 (3)
С9	0.086 (4)	0.102 (4)	0.074 (3)	-0.020 (3)	0.044 (3)	-0.021 (3)
C26	0.147 (7)	0.118 (5)	0.129 (6)	0.040 (5)	0.076 (5)	0.056 (4)
C25	0.118 (6)	0.096 (4)	0.060 (3)	0.033 (5)	0.022 (4)	0.022 (3)
Geometric paran	neters (Å, °)					
Cu1—N1		2.066 (3)	C8	—C7		1.392 (6)
Cu1—P1		2.2388 (11)	C8	—Н8		0.9300
Cu1—I1 ⁱ		2.6603 (9)	C7	—C12		1.376 (6)
Cu1—Cu1 ⁱ		2.8293 (12)	C4	—C5		1.376 (5)
P1—C13		1.823 (4)	C4	—H4		0.9300
P1-C19		1.830 (4)	C1	9—C24		1.378 (5)
P1—C7		1.831 (4)	C1	9—C20		1.384 (6)
N1-C1		1.333 (4)	C1	6—C17		1.374 (6)
N1—C5		1.338 (4)	C1	6—C15		1.378 (6)
N2—N3 ⁱⁱ		1.327 (4)	C1	6—H16		0.9300
N2—C6		1.333 (5)	C5	—Н5		0.9300
N3—N2 ⁱⁱ		1.327 (4)	C1	7—C18		1.395 (5)
N3—C6		1.349 (4)	C1	7—H17		0.9300
N4—C25		1.102 (8)	C1	8—H18		0.9300
C6—C3		1.476 (5)	C1	4—C15		1.386 (6)
C13—C18		1.382 (5)	C1	4—H14		0.9300
C13—C14		1.393 (5)	C2	4—H24		0.9300
C2—C1		1.378 (5)	C1	1—C10		1.361 (8)
C2—C3		1.378 (5)	C1	1—C12		1.387 (6)
С2—Н2		0.9300	C1	1—H11		0.9300
C23—C22		1.372 (8)	C1	5—H15		0.9300
C23—C24		1.385 (6)	C1	0—С9		1.368 (7)
С23—Н23		0.9300	C1	0—H10		0.9300
C22—C21		1.376 (8)	C1	2—Н12		0.9300
C22—H22		0.9300	C2	0—Н20		0.9300
C21—C20		1.373 (6)	C9	—Н9		0.9300
C21—H21		0.9300	C2	6—C25		1.460 (9)
C3—C4		1.387 (5)	C2	6—H26A		0.9600
CI—HI		0.9300	C2	6—H26B		0.9600
C8—C9		1.374 (6)	C2	6—H26C		0.9600
Cu1—I1—Cu1 ¹		64.51 (3)	C8	—C7—P1		118.6 (3)
N1—Cu1—P1		112.29 (9)	C5	C4C3		119.0 (4)
N1—Cu1—I1		104.81 (9)	C5	—C4—H4		120.5
P1—Cu1—I1		113.43 (3)	C3	—C4—H4		120.5
N1—Cu1—I1 ⁱ		103.87 (8)	C2	4—C19—C20		119.0 (4)
P1—Cu1—I1 ⁱ		106.64 (4)	C2	4—C19—P1		117.0 (3)
I1—Cu1—I1 ⁱ		115.49 (3)	C2	0—C19—P1		123.9 (3)
N1—Cu1—Cu1 ⁱ		117.65 (9)	C1	7—C16—C15		120.8 (4)

P1—Cu1—Cu1 ⁱ	129.83 (4)	C17—C16—H16	119.6
I1—Cu1—Cu1 ⁱ	58.07 (3)	C15—C16—H16	119.6
I1 ⁱ —Cu1—Cu1 ⁱ	57.42 (3)	N1—C5—C4	123.9 (3)
C13—P1—C19	105.43 (17)	N1—C5—H5	118.1
C13—P1—C7	104.18 (18)	С4—С5—Н5	118.1
C19—P1—C7	103.94 (19)	C16—C17—C18	119.0 (4)
C13—P1—Cu1	114.42 (13)	С16—С17—Н17	120.5
C19—P1—Cu1	116.59 (13)	C18—C17—H17	120.5
C7—P1—Cu1	111.05 (12)	C13—C18—C17	121.4 (4)
C1—N1—C5	116.3 (3)	C13—C18—H18	119.3
C1—N1—Cu1	122.1 (2)	C17—C18—H18	119.3
C5—N1—Cu1	120.8 (2)	C15—C14—C13	120.8 (4)
N3 ⁱⁱ —N2—C6	117.8 (3)	C15—C14—H14	119.6
N2 ⁱⁱ —N3—C6	117.0 (3)	C13—C14—H14	119.6
N2—C6—N3	125.2 (3)	C19—C24—C23	120.3 (5)
N2—C6—C3	117.7 (3)	C19—C24—H24	119.8
N3—C6—C3	117.0 (3)	C23—C24—H24	119.8
C18—C13—C14	118.3 (3)	C10-C11-C12	120.7 (5)
C18—C13—P1	124.4 (3)	C10—C11—H11	119.7
C14—C13—P1	117.3 (3)	C12—C11—H11	119.7
C1—C2—C3	119.3 (3)	C16—C15—C14	119.7 (4)
C1—C2—H2	120.4	C16—C15—H15	120.1
С3—С2—Н2	120.4	C14—C15—H15	120.1
C22—C23—C24	119.8 (5)	C11—C10—C9	119.7 (5)
С22—С23—Н23	120.1	C11—C10—H10	120.1
С24—С23—Н23	120.1	С9—С10—Н10	120.1
C23—C22—C21	120.4 (5)	C7—C12—C11	120.5 (5)
C23—C22—H22	119.8	C7—C12—H12	119.7
C21—C22—H22	119.8	C11—C12—H12	119.7
C20—C21—C22	119.7 (5)	C21—C20—C19	120.8 (5)
C20—C21—H21	120.2	C21—C20—H20	119.6
C22—C21—H21	120.2	С19—С20—Н20	119.6
C2—C3—C4	117.6 (3)	C10—C9—C8	120.1 (5)
C2—C3—C6	121.5 (3)	С10—С9—Н9	120.0
C4—C3—C6	120.9 (3)	С8—С9—Н9	120.0
N1—C1—C2	123.9 (4)	C25—C26—H26A	109.5
N1—C1—H1	118.1	С25—С26—Н26В	109.5
C2—C1—H1	118.1	H26A—C26—H26B	109.5
C9—C8—C7	121.1 (5)	С25—С26—Н26С	109.5
С9—С8—Н8	119.4	H26A—C26—H26C	109.5
С7—С8—Н8	119.4	H26B—C26—H26C	109.5
C12—C7—C8	117.9 (4)	N4—C25—C26	177.2 (8)
C12—C7—P1	122.9 (3)		
\mathbf{C} and \mathbf{C} (1)	1 1		

Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y-1, -z.

Fig. 1